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This paper presents a novel formulation of the two phase multicomponent transport
equations including reaction and adsorption of the transported chemical components. The
equations describing the phase saturation and the components transport within the phase are
written and treated in a very similar way. The resuiting set of coupled non-linear convection—
dispersion equations is posed as an initial-boundary value problem which is conveniently
formulated for numerical solution using an extended method of lines approach. The method of
lines offers two main advantages for the solution of this system of equations when compared
with lower order methods. The non-linear terms are treated in a straightforward manner and
the spatial derivatives can be represented with greater accuracy to high order without undue
complication. Highly accurate results are obtained for single and two phase problems for
which analytical results are known. € 1990 Academic Press, Inc.

1. INTRODUCTION

The most important example of two-phase flow in porous media is undoubtedly
in the simultaneous flow of oil and water in petroleum reservoirs during oil
recovery processes. Water is frequently injected into the reservoir to displace the oil.
This waterflooding process often leaves much oil behind due to poor fluid sweep
efficiency [1]. In order to improve the efficiency of the oil displacement process a
number of enhanced oil recovery (EOR) methods have been developed and applied
[2]. Polymer flooding [27 is an EOR process in which a small amount of polymer
is added to the injected water in order to increase the viscosity of the aqueous phase
and hence improve the sweep efficiency. Another related process involves injecting
both polymer and a suitable metal ion to form a crosslinked time setting gel within
the porous medium [4, 5].

To describe two-phase flow mathematically on a macroscopic scale, equations
have been proposed based on a combination of the mass conservation equations
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and Darcy’s law [6]. When the phenomenon of capillary pressure [ 7] is included
in. the two-phase flow equations for incompressible {luids, a generalized non-linear
convection—dispersion equation is obtained [8, 97 which is only analytically solubie
for a very limited class of problems [9]. If capillary pressure is neglected, the
governing equation becomes hyperbolic and the analytic solution to this equation
is the familiar solution of Buckley and Leverett [10]. In order to describe EQR
processes such as polymer flooding, the formulation must be extended o include
the transport of the chemical components within the aqueous phase. These species
may show dispersion, adsorb onto the rock matrix [11, 127, react with other
species [13], chemically degrade [14], and change the phase viscosity and
theclogy [1573. All of this behaviour must be taken into account in the transport
equations.

in this paper, we formulate a set of generalised coupled convection—dispersion
squations to describe two-phase multicomponent transport for a system in which
there is-capillary pressure, chemical reaction, and component adsorption. The egua-
tions for each of the components in the aqueous phase and for the water saturation
are treated in a very similar way although their boundary conditions are rather di-
ferent. The governing equations vield an initial-boundary value problem whick is
particularly suitable for numerical solution using a variation of the method of lines
(MOL) [16]. The spatial terms are discretised to give 3 coupled set of ordmary
differential equations (ODEs), which are solved numerically using one of several
available ODE library subroutines. This method has two important advantages
when applied to these transport equations. First, it is straightforward to deal with
the non-linear terms arising from the reaction, adsorption, and capillary pressure
terms in the equations. If finite difference methods are applied in the usual marner
by discretising to low order in time and formulating a matrix problem, then the
resulting equations require an iterative solution technique such as the Newton-
Raphson [17] which may involve a large amount of computational effort tc
achieve adequate convergence. The second advantage in using the MGL is that the
spatial derivatives in the convection and dispersion terms can easily be evaluatzd to
very high order with very little extra computational effort. These higher order
representations are particularly important for the convective term which leads to
dispersive numerical truncation errors [ 18, 197] when approximated to low spatiat
order. If higher order terms were used within a conventional finite difference for-
mulation [187, then. in addition to the non-linearities, much more broadly banded
matrices would result, which are more difficult and time consuming to scive.

The high order numerical scheme which is developed in this paper is applied to
some cxamples of 1D single and the two-phase problems. The results of these
calculations are compared with analytical resuits. An example of :wo-phase multi-
component transport is presented where two components mix to produce a viscous
third species. This in situ improvement in the mobility ratio leads to the formation
of an oil bank and the recovery of incremental reservoir oil.
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2. FORMULATION OF THE PHYSICAL AND MATHEMATICAL PROBLEMS

In this section, we present the mathematical formulation that we have used to
model multicomponent transport in 1D two-phase systems.

2.1. Convection—Dispersion Equations in Two-Phase Flow

In two-phase one-dimensional flow, consideration of the conservation of mass
across an infinitesimal volume, allowing for convection, dispersion, adsorption,
chemical reaction, and inaccessible pore volume [20, 21] yields the following
continuity equation for the transported component in the aqueous phase whose
concentration is C;:

oC, oC, , p1—9) ¢)6Cs,+(¢,-—¢)_C_f_5_

S S,
Yo fip O $; p.ot (p5.)
1 ¢ oCc,\ U, écC,
= . + S, R{C
p,,,&x(p ,ax> 5, ax T AC) (1)

where S, is the water saturation, p, is the water density, U,, is the aqueous phase
Darcy velocity, and D, is the diffusion/dispersion coefficient for component i within
the aqueous phase. The rock porosity ¢ may differ from the component effective
porosities ¢; because of excluded volume or inaccessible pore volume effects such as
those frequently observed for polymeric species [20-22]. The vector C represents
all of the transported species and R,(C) represents the rate of change of the concen-
tration of component i/ due to chemical reaction. In this work we assume that the
aqueous phase density is independent of its chemical composition. The adsorption
of each component is described by the isotherm C;(C). If the system is at chemical
equilibrium during the flow then, for an NC component system, Eq. (1) becomes

ac; e oC; os,,
(N Dsc (e

where
g 2
p= 0t )
and
G, = : (D, Z—C\,> V.. (ZC)+S“R (C). (5)

The term V', represents the superficial velocity of the transported component i
which is given by

I/’w, = Uw/¢i' (6)
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The adsorption behaviour couples together the time derivatives of all components
on which the isotherm depends.

2.2. Additional Equation for the Water Saturation
In the absence of capillary pressure, the fractional flow of water, /. in an

oil-water system is given by the expression

AT
I\'(Cﬂ Sw = ¢ 37 “ 4
R N AT R RN

~J

where k,,., k,, are the saturation-dependent relative permeabilities [6, 18] of watar
and oil, respectively, and u,, and u, are the water and oil viscosities. In generai, u,,
may be a function of any dissolved components that contribute to the viscosity.
The presence of capillary pressure complicates the fractionai flow equation since
the oil and water pressure gradients are not equal. The velocities of the aqueous
and oleic phases, U, and U,, are given by the generalised Darcy law expressions

as
kk,.
U= - ( =) 5
u, \ ox
Ky (2P, -
° #o(@x/'"

where the pressures in the water and oil phases, £, and P, are related through the
saturation dependent capillary pressure function:

Pc(Sw):Po_PW' {.;Gk‘

It can be shown from Eq. (7)-(10), that the fractional flow of water is

Ad AR
FuC, S)=£u(C. S+ 22 g(C, 8.) (C ), (1)
g ox J

where the function g(C, S,.) takes the form

kk, Sk "dFP .\
‘g(C, SMI): ru( Il) ro {__—_{_;‘ E‘iz"
¢Ekrw(sn ) !’lo + kI'O(SH') .‘Lli\(C)] \ds‘l'/,
A is the core cross-sectional area and @ is the water injection rate.
Conservation of mass for the aqueous phase requires that
Ag S,
A9 25, =0. {13}
Q ¢t

giving

ol oS cf,
= D : 0. (14
@ng(C Su) ] A¢<5r> m) (14)
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Finally, we note that, since f,, = f,.(C, S,,),

6fw afw a'S'w kro peg al’l w aCj
=(+ ﬂ—a—————zz(, =), (15)
ax OSH' ox (krw#o + kro,uw) i=1 a(’_/ cx

The resulting transport equation is

0 és,, Q [ef N[0S,
o [ — G55, ]— 46 <6S>(’6?>

k, NC o, ac> as,
3 16
+(/<mﬂo+kmﬂ,. _Z < )( ox ) ot (16)

This equation must be solved in conjunction with Eq.(2), subject to suitable
boundary conditions.
If we write Eq. (16) as

G.=0S,/a, (17)

we can write the full coupled set of equations in matrix form as

i ec, éc, ac,, 1Tl .1
S”““(aq) (acz)"'”(aq\() hici ) G
éc, . ec, ac,, ac,
<5C S+ a, <8_CZ>"'°‘: <5CNC> B,C; y G,
: : : : : : (18)
ac, ac,, 2Cpc
Aye (’&%F) ------- S, + oty (Ei\) BacCuc ‘T’V( = |Guc
0 0 0 1 BS G,
L 4 L g "]
2.3. Initial and Boundary Conditions
The initial conditions for all cases studied in this work are
Ci(x,0)=0; x>0 (19a)
S.(x,0)=S,; x>0 (19b)

where S,,. is the connate water saturation at which the water relative permeability
is zero [6, 18].
The simplest boundary conditions that can be applied for the transported
components are for the semi-infinite case where
Cl0,1)=Cp;  x=0--- (20a)

Cilx, t) = 0; X 00 (20b)
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Equation {20a} must be modified slightly when a pulse of material is injected. More
sophisticated inlet boundary conditions may be defined in: order to model particuiar
experiments more closely. For example, Bischoff and Levenspiel [237 set up model
boundary conditions to describe entrance and exit sections in a single phase system
of finite length. If dispersion coefficients are small, however, Eq. (20) provides a
good approximation to the actual boundary conditions.

The boundary condition for the water saturation eguation is

)

F. =1 x=0-- {

i

12}

F.—0; X =00, (21

jo

55

Initially, when §, =S, at x=0 and f,, =0 at x=0; the fractional flow of water at
the inlet boundary is entirely due to the effects of capillary pressure. Inlet boundary
conditions for two-phase flow in the presence of capillary pressure have been
written in a number of ways [8, 9] although it is fairly straightforward to show that
these are all equivalent.

3. NUMERICAL SOLUTION OF THE COUPLED TRANSPORT EQUATIONS

The coupled set of equations to be solved for the evolution of the water satura-
tion and transported component concentration profiles was given in Section 2.3. In
the absence of inaccessible/excluded pore volume effects [227 (8, =0 for all i}, these
equations can be expressed in the form

7(S,.C) C=G(S,.C) (22}
8S“' y (77
TI— - Gw{Sww C)? § )

where 7 is the submatrix of component terms given in Eq. (18). In all cases in this
paper, the above equations apply.

One approach to solving transport problems in chemical flooding [18, 247 is to
use a straightforward discretization to low order in space and time. In one dimension,
for example, the resulting tridiagonal system of equations can give reasonable
accuracy for linear problems. However, the complications of chemical reaction,
coupled adsorption, and the effects of two-phase flow give a set of non-linear equa-
tions which would require iterative solution or the use of non-linear solution techni-
ques [25]. In addition, there are serious difficulties if either the time or spatial
derivatives of Egs. (22) and (23) are discretised to high order. High-order spatial
discretizations, for example, lead to broad banded matrices which are much more
difficult to solve than the tridiagonal system. To avoid these problems we employ
the familiar method of lines which has been reviewed and applied recently by Byrne
and Hindmarsh [16]. In the MOL, a partial differential equation is expressed as
a2 system of coupled, non-linear ordinary differential equations (ODEs). This sysiem

581/86/2-13
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can be solved using one of the many robust and well-developed ODE solution
algorithms [16, 26].
3.1. The Method of Lines (MOL)
To rewrite Eq. (22) and (23) as a set of ODEs we pre-multiply Eq. (22) by the
inverse of matrix T to give
C=T7Y8,,C)G(S,,C) (24a)
8, =G,(S,,C) (24b)

and discretise only the spatial part of the resulting equations at the NX mesh points
where the solution is required. This procedure gives the set

dy,
Ttk: Fk( YI’ YZ’ —eey YNEQ)’ (25)

where NEQ =(NC+ 1)* NX for an NC component system, transported in the
aqueous phase.

3.2. Boundary Conditions

For the components transported in the aqueous phase, the boundary conditions
of Eq. (20) are imposed by specifying

dy,
TZI‘ =0; Y. INLET = YLO) (26)
INLET
and
dY
—x =Q(Y), (27)
dt |outLET

where 2(Y) is the backward-difference operator at the outlet point. A similar outlet
boundary condition is imposed for the water saturation equation to model the
semi-infinite problem. Other boundary conditions could be used to give capillary
end-effects in finite systems [8, 27].

The inlet boundary condition of Eq. (21a) is more difficult to impose. Because the
condition constrains the fractional flow of water, rather than the water saturation
itself, it is necessary to deduce the time-dependence of the water saturation at the
boundary. The continuity equation (13) is not useful at the inlet boundary, since
the spatial derivative of the fractional flow can only be expressed to first order. We
have obtained our best numerical results by using the mass balance condition to
determine the rate of change of saturation at the inlet boundary:

Ow— Qour=4¢ Jo a ~dx, (28)
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where Oy and Qo yuy refer to the total volumetric injection and production rates of
water only.
Making use of the trapezium rule we obtain, for example,

—> [(QIN —Qour) _ Nxz-l fiéﬂ] _ [?Ei—‘
INLET

ds..
—= : .
Agax dt d: joutLer

dt

[\
D

J=2

3.3, Solution Straregy

The set of Eq.(18) has now been formulated as an initiai value problem in
{NC +1)* NX unknowns. The solution strategy is:

(i} At each time within the integration process, evaluate the matrix 7 and
the right-hand sides G and G,, using Eqgs. (5), (17}, and (18). Calculation of the G,
in Eq. (5) requires the velocities V', which are expressed in terms of the fractional
flow of water:

F,

Vwi = Q_-‘l

A,

{iiy Invert the matrix 7. This inversion is triviat if the adsorption of gach
component depends only on its own concentration,

(iii} Construct the derivatives C, S,. at each mesh point using Egs. (24}, 126},
{27}, and (29},

{ivi Return the derivatives to the numerical ODE integrator so that the solu-
tion at the next time step is evaluated.

3.4. Trearment ¢f the Right-Hand-side, G,

Equation (17) shows that the transport terms for the water saturation equation
take a very similar form to those of the transported components given in Eg. (5).
The capillary dependent term [g(C, S, )] behaves like a non-linear diffusion coef-
ficient which evolves with the solution. Expansion of Eq. {17} gives

528“‘ [ Q af\q @g —i lﬁ‘gw\
G.=—g(C, S, )| = 8 5 g
G — o€ 8 G| Lo+ g (€S |(FY)
k,, NC rau \[EC) .
e /——.“‘)(——’)- (51}
(krwua +krolun) j=1 KCCJ/ a.\'

This expansion allows the water saturation equation tc be solved in the same way
as the component transport equations. The velocity term is modified by the addi-
tion of the term in dg/éS,. The terms in &f, /85, and cu,/0C, are evaluated
analytically from specified functions f,.(C, §,) and p,(C). The terms in &C,/0x have
already been calculated when evaluating the G,.
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3.5. Higher Order Discretisation

The spatial derivatives in Eqgs. (5) and (17) can be very accurately evaluated
using high order central differences. The maximum number of pairs of points that
can be used is given by

m=MIN(MORD, i — 1, NX — i) (32)

for the ith point, where MORD is the maximum number of pairs to be used in the
calculation and the order of the approximation is 2m. A first-order backward dif-
ference must be applied at the effluent point for first derivatives. The form of the
general central difference expression for first derivatives, assuming points are equi-
spaced is as follows:

éc o 1 o “f'j_Cf*l' 2m )
(Cx) g ( Siix )+O(Ax ). (33)

where the quantities, 4™, are related by recurrence relationships involving the
binomial coefficients which can be simplified to

_ 2m)!
"3y e
2m
A =M, (35)
and
m—j+1 )
A}M’:(————mij )Ajﬁl. (36)

The second derivatives associated with dispersive terms are given to successive
orders by

PC\Y /C,—2C+C;_ ,
':ZC 2) 16 C,‘ +Ci7- - Cl' ’)+ij _30C1
(;x2> ( (Civy 1)1’)(1“;- 2) >+0(Ax4) (38)
arc\® (270(Ci 1+ Ci_ 1) =27(Ci 2+ Ci_3)+2(Ciy 3+ C;_3) —490C;
6)(2 o 1804x2

+ 0(4x°).
(39)

It is much more common in the numerical simulation of fluid flow in oil reservoir
systems to use first- or second-order discretisation of derivatives. Either single or
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{wo point upsiream methods [297 are usually applied to the convective terms. We
will present calculations later in this paper using these approximations for
comparative purposes. The single point upstream representation is defined
straightforwardly as

6 —C, 1\
(-C-g) =<£’—‘~—i)+0(m>, (40
i /

Cx Ax
where the flow is in the direction of increasing 7. This approximation is accurate o
first order and it is stabilised by the large amount of numerical dispersion which it

introduces [19]. The two point upstream calculation must be performed using
overshoot/undershoot controls in the calculation of the first derivative as

e Cii12—Ci 5
( ) (.il_:___’.L:) 4+ 0(:@@) (417
Ox Ax

where the algorithm for the undershoot and overshoot fests is given sequentiallv as

CH—LvZ:Ci_%(Cz—E_'Ci) {425}
Ci+1,v'2:MAX{Ci+12’MIN(F, Cii i} } 425

=
[
)

Coii2=MIN{C, 5, MAX(C,, C;, )}

Analogous tests are applied to C,_ .

4. CoMPARISON OF HiGH OrRDER METHOD OF LINES
WITH ANALYTICAL SOLUTIONS

4.1, The Single Phase Convection Dispersion Problem

For a step concentration input, C,, in a semi-infinite system the one component
single phase convection—dispersion equation with boundary conditions given by
Eg. (20) has analytical solutions [307. Ogata [317 has given a solution for the case
of a linear irreversible reaction or adsorption. This equation is obtained from
Eq. (1) by setting S,. to unity, C; to zero, and R, to k,C, where &, iz the first-order
rate constant which may be negative (degradation) or positive (growth). For this
case the analytic concentration profile C ,(x. 1}, is given by

C 1= ') 0 — 8ot
C (x, t)=7”{exp [( ZﬂD) ”] erfc EF;(D;B)'”J

A+ ex | Tx+ B ) e
+exp[ D JerfL Dt“ZJ) {43;
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where the constant, ', is given by

1,2
4Dk1] m

|12

v

and v and D are the velocity and dispersion coefficient, respectively, and erfc is the
complementary error function [327].

In solving problems of this type numerically, we refer to the mesh Peclet number,
Pe,,, defined by

Pe,, =—-. (45)

In our MOL numerical solution, a Runge—Kutta-Merson [26] ODE integrator
was used. The ODE algorithm used has a fourth-order time truncation error. The
target solution error in all cases was sufficiently small to give converged solutions.
Although the numerical code can operate up to arbitrarily high order, the maxi-
mum order for the convective terms in this and most subsequent calculations
is tenth. In the problems studied in this paper, this order ensures adequate
convergence in most cases. In most cases, the dispersive terms are expressed to
sixth order.

Figure 1 compares high order numerical calculations with analytical results for
two problems, one in which there is first-order growth of concentration and the
other in which there is no reaction. These problems are expressed in dimensionless

1rﬁr-
WITH REACTION
1e5 ~—— HIGH ORDER HNUMERICAL
CALCULATIONS
® o 8 ANALYTICAL POINTS

12
o]
<
S te
3
- NO REACTION
< osf
z
&
o
=z
S o6

L 4
04|
021 k
1 1 1 1 L I 1 1 1

00 01 0-2 03 04 0.5 0-6 0-7 0-8 09 1-0

DISTANCE (X/L)

Fic. 1. Comparison of high order numerical calculations with analytic results for Pe,, = 40.
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form where v=10, D=15625x10""% and k,=0 and 1.0. For this case,
Ax=6.25x10"* which corresponds to a mesh Peclet number of 40. Figure 2 com-
pares the high order numerical calculation for one of these cases (k, = 1.0) with the
MOL technique using single and two point upstream approximations. The singi
point calculation is stable but is very dispersed. The solution profile calculated
using the two point upstream method appears to be a reasonably good fit to the
analytical solution. However, the pointwise agreement is rather poor and artificial
controls {see Eq.(42)) must be applied in order to remove spurious downstream
overshoot [297.

Accurate agreement between the analytical and numerical concentration profiles
may not be necessary in simple non-interacting systems for practical applications.
However, in polymer cross-linker reacting systems where dispersive mixing may be
necessary to initiate reaction, or in pressure constrained systems, high accuracy
calculations are required for proper modeliing of the system.

gain
sing

o
=

Analytical solutions for the constant velocity propagation of a pulse profile, ag
with linear adsorption/reaction terms, can be constructed from equation (43} usin
solution superposition. For a pulse input function of concentration C, between
time, =0, and ¢=1" then the analytic profile, Cg{x, ¢>1'} is given by

Calx, 1) =C x, 1) = Cix, 1— 1), (46

Comparisons between the higher order, single-point upstream and second-ordar
central difference calculations are shown for cases of pulse propagation in Figs. 3

]

ANALYTICAL SOLUTION AHD
Lo

PN

HIGH ORDER CENTRAL
DIFFERENCES

At

w=+~ 2 POINT UPSTREAM [
........ £ POINT UPSTREAM ‘
|

oy T

DR-1

CONCENTRATION  ({/Co)

A

01 0-2 0-3 04 05 [ 0.7 2-8 0-% 10
DISTANCE 1%/

FIG. 2. Comparison of high order numerical calculation with single and two-point upstream
approximation for Pe,, = 40.
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FiG. 3. Analytical and numerical concentration profiles for Pe,, = 40.

and 4. The system details are identical in these cases with v=3.5x 107*cms ', the
difference being that the mesh Peclet number is 40 in Fig. 3 (D= 1.1 x 10 > cm?s ™)
and 20 (D=22x10"*cm? ') in Fig. 4. These figures illustrate not only the
accuracy of the higher order scheme but its effect on the stability of the numerical
solution to the (linear) convection—dispersion equation.

12 “—J
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UL 2nd ORDER CENTRAL
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z 0:8p ’
o
g [
<
(=4
=
w06
ot
=z
S
a
P
2 04t
=
=
[+ 4
[=)]
=

0-2 |

0.0 L . 1 1 1

-0:2 I 1 1 i - 1 1 y - 1 il i

0.0 01 02 03 04 05 06 07 08 09 10

DISTANCE ALONG CORE (X/L)

FiG. 4. Analytical and numerical concentration profiles for Pe,, = 20.
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quantity must be less than 2 for stable non-oscillating central difference SOlutl s
to be obtained [34]. The 10th-order central difference scheme agrees almost exactly
with the analytical solution on the scale of this figure. However, there is a very
small amount of upstream undershoot on the higher order solution which is barely
visible on the figure and poses no practical problems.

A more objective test of the pointwise convergence properties of the high-order,
single point and two point schemes may be performed by defining average
pointwise error, &, as

— sl
&€= Z ‘ C icale analvl!cl ) e }‘

,_1

1 POINT UPSTREAM

-2.6
//
7/
e
. /
. \
e
-3 07 2 POINT UPSTREAM / ;
|
e i
=1 \ |
S
HIGE ORDER
S0 CENTRAL DIFFERENCES

MESH PECLET NUMBER Pem

FiG. 5. Pointwise convergence of the high order, single and two-point upstream calculations vs mesh
Peclet number.
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The log of ¢ is plotted against the mesh Peclet number, Pe,,, for the lower and
higher order schemes applied to the linear convection—diffusion equation in Fig. 5.
It is seen that the convergence of the high order method is very much more rapid
than that of the lower order schemes. For example, to achieve an average pointwise
error of ~0.1 % the high order scheme can work at a mesh Peclet number of ~ 10;
for the same accuracy the two-point upstream scheme must work at a mesh Peclet
number of ~1 and the single point upstream scheme must have Pe,, < 1. Thus the
two-point upstream discretisation would require a spatial grid about ten times as
fine as the high order scheme for the same accuracy. We note that the convergence
of the higher order scheme does not, as might first be expected, become more rapid
as we go to successively finer grids (lower mesh Peclet number). This can be seen
from Fig. 5, where the overall convergence rate is only of order ~3.5. This is due
to the effect of the lower order approximations close to the boundaries. The full
benefit of a higher order scheme may only be obtained for the propagation of a
profile from a region within the system away from the boundaries.

TABLE I
Data for the Model Cases

A Cross-sectionat area =159 cm?
Q  Injection rate =0.008333 cm?/s
k Absolute permeability = 0.349 Darcy
& Porosity =0.176
L Length of core® =10cm
Relative permeability curves
krulSy) =8 — Suc
keo(S,)=1-=5,—35,
Se Connate water saturation = 0.0375
S, Residual oil saturation  =0.15
U, Oil viscosity =218 cp
M Viscosity ratio =u,/u,
M=4;3=10°
Water viscosity, u,, (mPas) 8.720
Characteristic capillary 33.172

dP,
Pressure gradient (K) . (Pa)

constant y/f 0.12083

“A finite core length is considered for convenience and presentation in these cases although the
analytical solution is strictly for a semi-infinite system.

®See the work of Yortsos and Fokas [9, 33] for results relating to other values of parameters M
and B.
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4.2. Analytical Solutions of the Two-Phase Problem with Capillary Pressure

Analytical solutions to the two-phase flow problem in porous media in the
presence of capillary pressure are only available for a limited class of problems
{9, 33]. Although the solution is limited to linear relative permeability curves and
a particular form of the capillary pressure function P (S5, ), the result provides 2
useful analytical check on the numerical method for the solution of the water
saturation equation described in Section 3. In this section, we present a comparison
of our numerical method with this analytical solution for a waterflood, whers
viscous forces dominate but where some effect of capillary pressure is evident. Only
in such cases is the saturation front sufficiently sharp to require higher order
methods. When capillary pressure is dominant the fronts are so spread out [9. 337
that {ow order methods are adequate.

The details of the waterflood are given in Table I. The relative permeability func-
tions in Table I are linear. All other quantities are defined in the table except for the
parameters 7 and f. The ratio of these quantities is used in the analytical definition
of the capillary pressure function, P(S,), as shown below. Only the derivative of
capillary pressure is required in the analytic solution and Yorisos and Fekas {57
give an expression for this quantity. We have obtained the following form of the
capillary pressure to within an additive constant by integrating their formula

[ i g )
i,
| 1 /dp i _
Pis. )= (%) tog, | —2— |
(S +l) d‘sw/(’h <S +_‘}_') jk_’S‘or‘>_ ‘Sw i
\ or }3 or ,8/ \ /
(48
Sw - ‘gwc
to———< log.{ —— i}

1+i—su) t+i-5,. /1
(5 . B /;_l

where (dP_/dS,),, i1s the constant characteristic capillary pressure gradient giver in
Table I for the cases studied here. The integration constant is taken to be zero in
Eq. (48} above. The case presented in this paper and other related calculations are
discussed fully in Yortsos and Fokas [9, 33].

In applying our numerical method to the calculation of water saturation profiles
with capillary pressure, it is inappropriate to quote a fixed mesh Peclet number
since the dispersive term is the non-linear saturation dependent capillary pressure
term which varies along the system. If a sufficiently fine grid is used for the calcula-
tion, 81 grid points in this case, then a reasonably good practical fit to the analytic
solution 1s obtained for a second-order comvective term as shown in Fig. 6.
However, when this solution is examined more closely the very high pointwise
accuracy of the higher order numerical scheme becomes clear. Table Il compares
the 81 grid point calculations using different orders of approximation to the convec-
tive term. The single point upstream approximation gives a very poor fit to the
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Fig. 6. Comparison of analytical and second-order numerical (81 mesh point) saturation profile
(at t=1679s).

saturation profile. In the plateau region behind the water front (S,=1—-Sor=
0.8500), the saturation value is calculated with a 2.5 % error for the single point
approximation. This source of error is gradually removed as the order of the
numerical solution is increased as shown in Table II. This effect is accentuated as
the number of grid points is reduced. Figure 7 shows a comparison between a low
(second-order convection and dispersive terms) and higher order (10th-order con-
vective; 6th-order dispersive term) calculation of case A with only 21 mesh points.
The higher order calculation is more accurate both behind the saturation front and
in the region of this front. This is due to the inlet boundary condition (Eq. (29))
which imposes mass conservation. Errors in the phase velocity at the flood front

TABLE I

Numerical Solution for the Two-Phase Displacement for Different Convective Orders
(Dispersive Order =6; NX =81}

x (cm) Analytical 1 pt. upstream  2nd order 4th order 6th order 10th order
0.0 0.8500 0.8712 0.8482 0.8497 0.8499 0.8500
30 0.8500 0.8710 0.8482 0.8497 0.8499 0.8500
4.0 0.8494 0.8689 0.8477 0.8491 0.8493 0.8494
5.0 0.8409 0.8456 0.8404 0.8406 0.8408 0.8409
55 0.8123 0.7803 0.8151 0.8122 0.8123 0.8124
6.0 0.6644 0.5232 0.6741 0.6662 0.6647 0.6643
6.25 04014 0.2671 0.4051 0.4037 0.4023 0.4018
6.5 0.1033 0.0921 0.1116 0.1054 0.1039 0.1034
6.75 0.0425 0.0460 0.0447 0.0425 0.0425 0.0425
7.0 0.0378 0.0387 0.0381 0.0378 0.0378 0.0378

8.0 0.0375 0.0375 0.0375 0.0375 0.0375 0.0375
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FiG. 7. Comparison of 2nd and high order discretisation for saturation profile in two-phase flow.

due to numerical inaccuracies, have a feedback effect on the boundary condition
and hence affect the plateau height. Although the dispersive term in Table IT is also
calcuiated to higher (sixth) order, it is shown in Table 111 that this does not have
a very important effect on the accuracy of the case A numerical solutions.

For the high order scheme, the effect of mesh refinement is illustrated in
Table IV. A comparison of the second-order resuits in Table II with the higher
order results in Table 1V, indicates that the higher order scheme does rather better
than the lower order in terms of pointwise accuracy, with half the number of mesh
points.

TABLE 11

Numericai Solution for the Two-Phase Displacement for Different Dispersive Orders
(Convective Order = 10th

x {cm) Analytical 2nd order 4th order 4th order
0.0 0.8500 0.8497 0.8500 0.8500
3.0 0.8500 0.8497 0.3506 0.8500
40 0.8494 0.8491 0.8494 0.8494
5.0 0.8409 0.8402 0.8409 0.8409
5.5 0.8123 0.8109 (.8125 0.8124
6.0 0.6644 0.6650 0.6639 0.6643
6.25 0.4014 0.4018 0.4023 0.4018
6.5 0.1033 0 1041 0.1034 0.1034
6.75 Q.0425 0,044 (0426 N0425.
70 0.0378 0.0381 0.0278 0.0378

8.0 0.0375 0.0375 0.0375 8.0375
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TABLE IV

Numerical Solution for the Two-Phase Displacement for Different Mesh Sizes
(Convective Order = 10th; Dispersive Order = 6th)

x/L Analytic NX =21 NX=41 NX =81 NX =161
0.0 0.8500 0.8463 0.8497 0.8500 0.8500
3.0 0.8500 0.8460 0.8497 0.8500 0.8500
4.0 0.8494 0.8459 0.8492 0.8494 0.8494
50 0.8409 0.8410 0.8407 0.8409 0.8409
5.5 0.8123 0.7902 0.8126 0.8124 0.8124
6.0 0.6644 0.6834 0.6660 0.6643 0.6644
6.25 04014 — 0.4007 0.4018 04013
6.5 0.1033 0.1612 0.1098 0.1034 0.1032
6.75 0.0425 — 0.0415 0.0425 0.0425
7.0 0.0378 0.0320 0.0378 0.0378 0.0378
8.0 0.0375 0.0379 0.0375 0.0375 0.0375

5. AN EXAMPLE OF TwO-PHASE MULTICOMPONENT TRANSPORT

In this section we illustrate the numerical solution procedure described in
Section 3 for the two-phase multicomponent transport of a chemically reacting and
adsorbing system. The product of the chemical reaction increases the viscosity of
the drive water. The problem is based on the waterflood of Section 4 but uses a
water viscosity of 0.545 cp. This gives a water/oil viscosity ratio of 0.25 and a
correspondingly poor waterflood displacement efficiency. No analytical result is
available for this case.

The generation of a viscous component in situ will lead to a local improvement
in the mobility ratio and cause the formation of an oil bank. This is a similar situa-
tion to that proposed for the in situ gelation of polymers [35]. However, flow is in
this case one dimensional and oil recovery is increased by improved microscopic
(linear) sweep efficiency rather than by fluid diversion and crossflow as occurs in
insitu gelation in stratified systems [35,36]. We consider a three component
system in which component 4 is injected as a pulse into the core during the initial
waterflood. This component adsorbs strongly onto the reservoir rock and is conse-
quently retarded. A second pulse of a different non-adsorbing component, B, is
injected some time later which ultimately “catches” component 4 and a chemical
reaction takes place in the region of dispersive mixing of 4 and B to produce a
third component C (i.e., A + B— C). The reaction rate is described by the second-
order rate law

1d[4]  1d[B]_d[C]
T2 4 2 4t ar

=k,[4][B], (49)

where k, is the second-order (mass) rate law and the factor of 3 ensures mass

o
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conservation. We assume that component 4 adsorbs according to a linear isotherm
such that

dCs4

= const. {
dcC, '

<
=

Cormaponent C contributes to the viscosity of the water through the linear
relationship,

pLCT) =u ([CT=0)+<LCT,

.
th

where £ is a constant.

Details of the parameters used in the calculation are given in Table V.

Figure 8 shows the predicted normalised concentration profiles of componenis 4,
B, and C at +=4000s. Component C can be seen at the intersection of the com-
ponent 4 and component B profiles where chemical reaction has occurred. Figure 5
shows the water saturation profile that has developed as a result of the insitu
chemical reaction. The profile for the no reaction (k,=0) case has been drawn for
comparison. The oil bank generated by the formation of component C can be seen

TABLE YV

Parameters Used in Multicomponent Transport Example

U, Water viscosity =0.545¢cp
o Coefficient of viscosity for=1.0 cp
component C
M Mobility ratio =0.25
Characteristic capillary  =3.2738 x 10~*amm
pressure gradient”
Constant y/§¢ = —1.2333
Injection profile
Time (s) Component + water
-800 A
8002400 —
2400-3200 B
3200 —
Dispersion coefficient for all components =20x 10" cm%s
Component porosities, ¢, = Rock porosity =0.17%
Gradient of adsorpiion isotherm for component 4 =0.1
Density ratio g, fw =26
Chemical reaction rate & =025t

2 8ze the work of Yortsos and Fokas [9, 33].
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Fic. 8. Normalised component concentrations for multicomponent example 7 = 4000 s.

clearly. The resulting improvement in the profile of cumulative produced oil with
time for the “gel” flood is compared with that of the base case waterflood in Fig. 10.

The example presented above was performed using higher order discretisation of
the spatial terms with NX =81 grid points as it was difficult to obtain a fully
converged solution using a low order approximation. This calculation gives an

1
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F1G. 9. Comparison of calculated water saturation profiles (+=4000s) for waterflood and viscous
gel flood.
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illustration of the use of the high-order MOL method for more realistic non-linear
two-phase multicomponent transport problems for which ne analytical solution is
known.

6. SUMMARY AND CONCLUSIONS

In this paper, we have formulated the general two-phase (oilywater} multicompo-
nent transport equations in a novel way and have developed an accurate numerical
method for their solution. The formulation unifies the treatment of the components
transported in the aqueous phase and the water saturation evolution equafion.
Component dispersion, adsorption, chemical reaction, and inaccessible/excluded
volume terms are incorporated into the coupled transport equations. A generalisa-
tion of the water saturation equation is derived which includes capillary pressure
terms and the effect of viscous feedback on the local fractional flow. The equations
for both the component and aqueous phase transport are similar in structure and
together they form a coupled set of non-linear convection-dispersion eguations,
This set of equations is expressed in matrix form as an initial/boundary value
problem with coupling between the component and saturation solutions. A simple
Dirichlet boundary condition is adequate for transported components, whereas a
more complex boundary condition applies for the phase saturation in the presence
of capillary pressure.

The formulation described above is very conveniently posed for numerical solu-
tion using the method of lines (MOL). The two particular advantages of this

SR1/R6/2-14



462 ROBERTS AND SORBIE

numerical solution technique are that the non-linear terms are dealt with very con-
veniently without using an iterative method and that it is very straightforward to
extend the discretization of the spatial terms to higher order.

Comparison with both single and two-phase analytical results shows that using
the higher order MOL gives excellent pointwise accuracy compared to low order
finite difference methods. An example of multicomponent two-phase transport with
chemical reaction and adsorption is presented for illustrative purposes only since no
analytical solution exists for this problem.

The specific conclusions of this work are as follows:

(i) A novel general formulation of the two-phase multicomponent transport
equations in porous media has been derived.

(ii) This formulation is very conveniently posed for numerical solution as an
initial/boundary value problem.

(ili) A high-order method of lines solution has been developed which shows
high pointwise accuracy for both single and two phase analytic solutions when
compared with lower order methods on a given grid. It also handies non-linearities
in the equations in a very convenient way.

(iv) The higher order scheme appears to stabilise oscillations for cases where
the mesh Peclet number is >2.

(v) The convergence properties of the higher order scheme are affected by
the lower order approximations at the boundaries.

(vi) For the water saturation equation, a mass balance boundary condition
provides a convenient method of obtaining the correct saturation development at
the boundary and along the entire system.

APPENDIX: NOTATION

A Cross-sectional area of core

Al Coefficients in higher order discretization expression (33)

C,, Cy, C; Concentrations of components 4, B, and i

C, Concentration at inlet boundary (Dirichlet condition)

Cox Concentration at inlet boundary of component &

C, Concentration of adsorbed component i

C Vector of transport component concentration; C time rate of change
of C

D Dispersion coefficient

D; Dispersion coefficient of component 7

S Fractional flow of water without capillary pressure

F, Derivative function for the evolution of equation &

F, Fractional flow of water with capillary pressure

g(S,..C) Non-linear capillary dispersive term
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Component i transport and reaction terms {Eq. (S
Transport term of water

Absolute permeability

Relative permeability to oil

Relative permeability to water
First-order rate constant

Second-order rate constant

Length of core

Mohility ratio

Constant in expression for first derivatives using m nearest pairs
Number of transported components in agueous phase
Number of mesh points

Capillary pressure

Mesh Peclet Number

Qil phase pressure

Water phase pressure

Total volumetric injection rate of water

Volumetric injection rate of water

Volumetric production rate of water

Chemical reaction rate of component /

Residual oil saturation

Water saturation

Connate water saturation

Time

Duration of pulse injection

Matrix in Eq. (22)

Aqueous and oleic phase Darcy velocities

Superficial velocity; V, oil velocity; ¥, water velocity
Superficial velocity of component i transported in the aqueous phase
Spatial co-ordinate

kth solution to the coupled transport problem

Boundary solution for the coupled transport problem
Vector of solutions evolved by ODE integrator
Adsorption density term as defined in Eq. {3}

Counstant in Yortsos and Focas capillary pressurs function
Coefficient in Ogata expression

Inaccessible pore volume term for ith component (Eq. (4)}
Constant in Yortsos and Focas capillary pressure function
Mesh spacing

Average pointwise absolute error

Oil viscosity

Water viscosity

Linear viscosity coefficient

Rock density

)
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£ Water density
¢ Porosity
&; Effective porosity to component i

2(Y) Outlet point backward difference operator

dP .. . .
( p SC> Characteristic capillary pressure gradient
w/ ch

aC\ ™ o . .
(6—) Approximation to the derivative at point / using m pairs of nearest
X

2 b —

=S

NN IEN-N

10.
11
12.
13.

15.

16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

i points.
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